[필수학도형특강] 초5~중2 도형이 어려운 학생들 모두 모여라~

대치동 필수학학원

2020년 11월 20일

image



그래서 쉬우면서도 체계적인 학습법이 필요합니다.필수학 초중등 도형 특강


도형이 어려워? 사고력 수학은 뭐야? 서술형 문제는 어떻게 해결하지?

이번 겨울 「한눈에 보는 수학 연대기」로 한방에 다 해결하자!



예제1) 아래 도형에서 수직인 두 직선은 모두 몇 쌍입니까?


image


<출처: 초등 4학년 2학기 ‘수직과 평행’>


이 문제의 정답은 무엇일까요?


이 쉬워 보이는 문제는 의외로 고등학생 중에서도 틀리는 학생이 꽤 많습니다.


정확한 개념이해와 연습이 부족했기 때문입니다.



image


예제2) 두 지점 A, B 사이의 거리를 구하여라.


중등 1학년 2학기 도형의 합동 (개념+유형 개념편 49쪽 17번)


대부분의 학생들은 이 문제의 답도 금방 맞춥니다. 6km라고 말이죠.


왜 답이 6km인지 물어보면


"삼각형EDC와 삼각형BAC가 합동이다.

따라서 그 대응변 선분ED와 선분BA의 길이가 같기 때문이다."


라고 대답합니다. 그러면 추가 질문을 합니다.


"삼각형EDC와 삼각형BAC은 무슨 합동이니?"


그러면 다음과 같이 대답합니다.


"두 삼각형은 SAS합동입니다."


또 질문합니다.


"왜 SAS합동이니?"


그러면 대답을 못하고 끙끙거립니다.


사실 두 삼각형은

SAS합동이 아니고 ASA합동입니다.


우리 학생들은 쉬운 길을 선택하고 반칙을 해서라도 답을 구하는 행위에 익숙합니다.

중1까지만 공부하고 그만둘 것이라면 상관없지만

중2, 중3, 고등까지 공부할 것이라면 처음부터 개념 학습을 정확히 해야합니다.


대수(수와 식)는 기계적인 훈련에 의해서 일정 부분 실력이 향상될 수 있습니다.

그러나 도형은 단순한 기계적인 훈련만으로는 실력 향상이 쉽지 않습니다.

도형은 실물이기 때문입니다.

가짜 답이 나오는 이유는 그 실물이 보이지 않기 때문입니다.

이 부분이 많은 학생들이 도형을 어려워 하는 근본적 이유이며

그래서 쉬우면서도 체계적인 학습법이 필요합니다. 


image

image





그래서 필수학에서는

‘한눈에 보는 수학연대기’ 교재를 이용한 스토리텔링형 개념유도,

교재에서 놓치기 쉬운 것까지 알려주는 디테일한 개념설명,

학생 스스로 만지고 그리는 체험활동,

문제풀이와 서술에 대한 훈련

이 모든 과정을 15회에 걸쳐 꼼꼼하게 준비하였습니다.






image





이번 겨울 방학 완벽한 도형 개념 정리

사고력 수학에 대한 반복 학습

그리고 스토리텔링형 수학에 대한 두려움을 없애고 싶은

학생들에게 강력 추천하는


필수학 초중등 도형 특강

자세한 상담을 원하시는 분들께서는

학원으로 전화 부탁드리겠습니다.